MSAT: a multiple sequence alignment tool based on TOPS.

نویسندگان

  • Te Ren
  • Mallika Veeramalai
  • Aik Choon Tan
  • David Gilbert
چکیده

This article describes the development of a new method for multiple sequence alignment based on fold-level protein structure alignments, which provides an improvement in accuracy compared with the most commonly used sequence-only-based techniques. This method integrates the widely used, progressive multiple sequence alignment approach ClustalW with the Topology of Protein Structure (TOPS) topology-based alignment algorithm. The TOPS approach produces a structural alignment for the input protein set by using a topology-based pattern discovery program, providing a set of matched sequence regions that can be used to guide a sequence alignment using ClustalW. The resulting alignments are more reliable than a sequence-only alignment, as determined by 20-fold cross-validation with a set of 106 protein examples from the CATH database, distributed in seven superfold families. The method is particularly effective for sets of proteins that have similar structures at the fold level but low sequence identity. The aim of this research is to contribute towards bridging the gap between protein sequence and structure analysis, in the hope that this can be used to assist the understanding of the relationship between sequence, structure and function. The tool is available at http://balabio.dcs.gla.ac.uk/msat/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Application of the ABS LX Algorithm to Multiple Sequence Alignment

We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...

متن کامل

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...

متن کامل

MSA-GA: Multiple Sequence Alignment Tool Based On Genetic Approach

Genetic algorithms are relatively new optimization technique that can be applied to various problems, including those that are NP-hard. We have proposed a new web based tool MSA-GA (Multiple Sequence Alignment tool based on Genetic Approach) is developed for aligning the DNA sequences in order to find out the alignment of sequence. With this tool we have developed two different Genetic crossove...

متن کامل

Multiple structural alignment for distantly related all beta structures using TOPS pattern discovery and simulated annealing.

Topsalign is a method that will structurally align diverse protein structures, for example, structural alignment of protein superfolds. All proteins within a superfold share the same fold but often have very low sequence identity and different biological and biochemical functions. There is often significant structural diversity around the common scaffold of secondary structure elements of the f...

متن کامل

Segment-based multiple sequence alignment

MOTIVATION Many multiple sequence alignment tools have been developed in the past, progressing either in speed or alignment accuracy. Given the importance and wide-spread use of alignment tools, progress in both categories is a contribution to the community and has driven research in the field so far. RESULTS We introduce a graph-based extension to the consistency-based, progressive alignment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied bioinformatics

دوره 3 2-3  شماره 

صفحات  -

تاریخ انتشار 2004